Lossy Spherical Cavity Resonators for Stress-Testing Arbitrary 3D Eigenmode Solvers
نویسندگان
چکیده
A lossy metal-wall cavity resonator that extends well beyond perturbation theory limits is studied. An exact analytical solution is employed for the spherical cavity resonator, having walls transformed from being a perfect electrical conductor (PEC) to free space. This model then acts as an ideal benchmark reference standard. A plane-wave approximation is then derived. Independent full-wave numerical modeling of the spherical cavity resonator is undertaken using eigenmode solvers within two well-known commercial, industry-standard, simulation software packages (HFSSTMand COMSOL). It has been found that the plane-wave approximation model accurately characterizes the results generated by these solvers when equivalent finite conductivity boundary (FCB) and layered impedance boundary (LIB) conditions are used. However, the impedance boundary (IB) condition is accurately characterized by the exact model, but the precise value of complex wave impedance at the wall boundary for the specific resonance mode must first be known a priori. Our stress-testing results have profound implications on the usefulness of these commercial solvers for accurately predicting eigenfrequencies of lossy arbitrary 3D structures. For completeness, an exact series RLC equivalent circuit model is given specifically for a spherical cavity resonator having arbitrary wall losses, resulting in the derivation of an extended perturbation model.
منابع مشابه
Cavity with a deformable mirror for tailoring the shape of the eigenmode.
We demonstrate an optical cavity that supports an eigenmode with a flattop spatial profile--a profile that has been proposed for the cavities in the Advanced Laser Interferometer Gravitational Wave Observatory, the second-generation laser interferometric gravitational wave observatory--because it provides better averaging of the spatially dependent displacement noise on the surface of the mirro...
متن کاملEigenmode Computation for Cavities with Perturbed Geometry Based on a Series Expansion of Unperturbed Eigenmodes
The geometry of an accelerator cavity determines its eigenmodes and thereby its performance characteristics. Therefore, accelerating performance and wakefield characteristics may be improved by an intentional modification of the geometry. However, undesired geometry perturbations due to manufacturing tolerances and operational demands can likewise impair it. To analyze the effects of geometry v...
متن کاملA Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method
Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...
متن کاملExact mode volume and Purcell factor of open optical systems
The Purcell factor quantifies the change of the radiative decay of a dipole in an electromagnetic environment relative to free space. Designing this factor is at the heart of photonics technology, striving to develop ever smaller or less lossy optical resonators. The Purcell factor can be expressed using the electromagnetic eigenmodes of the resonators, introducing the notion of a mode volume f...
متن کاملThree-Dimensional Finite Element Analysis of Stress Intensity Factors in a Spherical Pressure Vessel with Functionally Graded Coating
This research pertains to the three-dimensional (3D) finite element analysis (FEA) of the stress intensity factors (SIFs) along the crack front in a spherical pressure vessel coated with functionally graded material (FGM). The vessel is subjected to internal pressure and thermal gradient. The exponential function is adopted for property of FGMs. SIFs are obtained for a wide variety of crack sha...
متن کامل